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An inviscid analytic model is proposed for the steady separated flow around an
inclined flat plate. With the plate normal to the stream, the model reduces to the wake-
source model of Parkinson & Jandali originally developed for flow external to a
symmetrical two-dimensional bluff body and its wake. At any other inclination, the
Kutta condition is satisfied at both leading and trailing edges of the plate, and, in the
limit that the angle of attack approaches zero, classical airfoil theory is recovered. A
boundary condition is formulated based on some experimental results of Abernathy,
but no additional empirical information is required. The predicted pressure
distributions on the wetted surface for a wide range of angle attack are found to be in
good agreement with experimental data, especially at smaller angles of attack. An
extension to include a leading-edge separation bubble is explored and results are
satisfactory.

1. Introduction

To the aerodynamicist, the importance of studying the flow around an inclined flat
plate can be perceived through two limiting situations. At small angles of inclination,
the flat plate act as a thin airfoil to produce lift, fundamental to the theory of
aerodynamics. When the plate is normal to the stream, it becomes a bluff body which
is also of aeronautical interest (e.g. a spoiler on an airfoil) when a large value of drag
force is required.

In a uniform stream approaching a flat plate at a small angle of inclination, α, the
Kutta condition applied at the trailing edge ensures finite velocity locally and allows
the determination of circulation and lift. In this classical airfoil theory, the velocity
around the leading edge is infinite because the flow has to turn around a sharp edge,
resulting in infinite suction. Visualized Flow (Japan Society of Engineers 1988, figures
127 and 128) shows that a separation bubble is located at the leading edge for
3°%α% 7°, making the pressure finite as supported by the measurements of
McCullough & Gault (1951).

The free-streamline theory introduced by Kirchhoff (1869) which made use of the
method of conformal mapping developed by Helmholtz (1868) treated the flow normal
to a flat plate. Their model requires that the pressure along the separation streamlines
bounding the wake is equal to its free-stream value. Roshko (1954) modified the free-
streamline theory such that the pressure over the initial portions of the free streamlines
is equal to that in the wake measured experimentally. The predicted pressure
distribution is in good agreement in comparison with experimental data by Fage &
Johansen (1927, hereinafter referred to as FJ) Further extensions of the free-streamline
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theory allowing a continuous variation of flow in the whole range (0!α% 90°) were
carried out by Mimura (1958), Wu (1962) and Abernathy (1962). Good agreement is
found between theoretical and experimental pressure distributions when 30°%α% 90°
but discrepancy becomes obvious when α% 15°, as reported by Mimura. In the models
for fully developed wake flows and partially developed wake flows by Wu (1962), it has
been shown that the latter model can be reduced to the classical airfoil theory. A
thorough review of the free-streamline theories can be found in Wu (1972).

A wake-source model developed by Parkinson & Jandali (1970, hereinafter referred
to as PJ) for flow external to a symmetrical bluff body and its wake has been shown
not only to give predictions in good agreement with experimental data from FJ and
Roshko’s theory in the case of the flow normal to a flat plate but also in cases such as
a circular cylinder, 90°-wedge and an elliptical cylinder. The model makes use of
conformal mapping and mathematical singularities in a different and simpler way from
the above-mentioned free-streamline theories. Replacing conformal mapping by
vortex-lattice discretization, Bearman & Fackrell (1975) extended the model to
axisymmetric bluff bodies, such as a circular disk and a sphere. Kiya & Arie (1977)
modified the wake-source model by including the far-wake displacement effect which
was originally put forward by Woods (1961).

This paper presents a model for steady separated flow around an inclined flat plate.
With the plate normal to the stream, the model reduces to the wake-source model of
PJ. At any other inclination, the Kutta condition is satisfied at both leading and
trailing edges of the plate. Circulation is added to the flow so that as the angle of attack
approaches zero, classical airfoil theory is recovered, as in the model for partially
developed wake flows developed by Wu (1962). An attempt of this kind has been
reported by Bearman & Fackrell but similar to the free-streamline theories, there is
deteriorating agreement between the experimental results and the theoretical and
numerical results as α becomes 15° or less. The suitability of the zero-total-vorticity
condition around bodies generating substantial lift and the availability of an additional
empirical parameter, such as the net vorticity, were discussed in their paper. Better
agreement is found if the pressure at the centre of the plate is specified.

The model for complete flow separation described herein shows good agreement
with experimental data for 14.85°%α% 90° by introducing a new boundary condition
suitably developed from the physical evidence based on some experimental data from
Abernathy, although no additional empirical parameters are required. Extensions of
this model to include incomplete flow separation or a separation bubble at the leading
edge when α¯ 5.85° are included and results are satisfactory.

2. Theory

2.1. Flow model for completely separated flow

Complete separation is assumed behind the plate such that the pressure on the plate
exposed to the wake is constant. The flat plate of unit length with uniform stream U
approaching at incidence α in the physical plane, as shown in figure 1, is conformally
mapped to a circle of unit radius in the transform plane by the Joukowsky
transformation,
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(180° apart on the circle) which coincide with the tips of the plate in the physical plane
and are also the critical points in the mapping. Unlike the original wake-source model,
the plate is at an arbitrary incidence so that symmetry can no longer be applied to
determine the strengths and the locations of these sources. A vortex of strength Γ is
added to the centre of the circle so that the complex potential is
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The velocity V in the ζ-plane is related to the velocity U in the z-plane by

U e−iα ¯
V

(dz}dζ ) r¢
3U¯ 4V.

The unknowns include Q
"
, δ

"
, Q

#
, δ

#
and Γ, and can be determined by the following

appropriate boundary conditions:
(a) Flow stagnates at the leading and trailing edges in the ζ-plane, where ζ

L
¯ ei(π−α),

ζ
T

¯ e−iα

w(ζ ) r
L,T

¯
dF

dζ )
L,T

¯ 0, (1)

so that two stagnation streamlines are formed at the critical points. This can be
considered as a form of Kutta condition because the velocity is finite at these points in
the z-plane.

(b) By using Bernoulli’s equation, the pressure at the leading and trailing edges in
the z-plane is set equal to the pressure in the wake
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is the base pressure coefficient.
In total, four boundary conditions result from conditions (1) and (2). If α¯ 90°, by
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Therefore, the original wake-source model of PJ is recovered. These four conditions,
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even if α1 90°, are sufficient to solve the problem when the vortex is excluded. Some
preliminary calculations, however, show that, with Γ¯ 0, the predicted pressure
distributions are in good agreement with experiment only if α& 50°. This is similar to
the results reported in Bearman & Fackrell. (Note that their definition of α is different
from the notation used here.) Apparently, the complex potential is incomplete without
the vortex and its strength is to be determined by an extra boundary condition.

Before discussing this new boundary condition, the significance of the vortex, which
contributes to the circulation around the flat plate, is to be examined. In the limit that
αU 0°, the wake behind the plate will diminish and so will the strengths of the sources.
The Kutta condition at the trailing edge leads to the determination of the strength of
the vortex, which is
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Therefore, classical airfoil theory is recovered. As can be seen, the inclusion of the
vortex not only improves the agreement between theoretical and experimental results,
but also allows the Kutta condition to be properly satisfied.

2.2. Deduction of fifth boundary condition

According to the experimental results reported by Abernathy,

D£ c sinα,

where D is the ‘separation between free-vortex layers ’, c is the length of the plate and
40°%α% 90°. Here, only the data with least blockage are considered because the
present model is for unconfined flow. In the context of this steady flow model, the
following empirical relation is deduced

Hα £ c sinmα,

where Hα is the asymptotic downstream spacing of the separation streamlines at α, and
m¯ 1. Note that Hα is perpendicular to the upstream velocity, U. (The necessity of
exponent m will be obvious later.) This provides a condition to link the total source
strength at any α to that at α¯ 90°, i.e.

Q
"
­Q

#

2Q
¯

Hα

H
*!

°

¯ 0 sinα

sin 90°1
m

, (3)

where Q is the source strength at α¯ 90°. The first equality is derived from the
equation of continuity, since

2Q¯UH
*!

°.

With m¯ 1, good agreement is found between the prediction and the measured
pressure distribution from FJ on the upstream side of the plate at α¯ 69.85°, 49.85°,
29.85°. The case for α¯ 90° can be found in PJ. Note that Abernathy’s data are valid
for 40°%α% 90° since the chamfer angle at the leading and trailing edges of the plate
used is 25°. The value of m, however, must be increased to 1.5 for α¯ 14.85° and
m¯ 1.90 for α¯ 5.85° to achieve satisfactory agreement. This undesirable variation of
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m may be explained by the fact that D is no longer well defined as α gets smaller, owing
to possible flow reattachment on the upper surface of the plate, but it makes the model
unsatisfactory. Another model is now considered.

As originally proposed by Roshko and adopted by Abernathy, a modified Strouhal
number S*, defined as
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is found to be a constant in Abernathy’s data. The frequency of vortex shedding is n,
while U
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is the maximum mean speed in the free-vortex layers from the inclined plate,
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In other words, S**¯S, the conventional Strouhal number based on projected plate
width. Figure 2 is the comparison of S* and S in Abernathy’s data for the case of
minimum blockage. Indeed, S is also independent of a wide range of α, especially at
smaller angles of attack. Therefore, it may be more suitable to use the condition
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instead of (3) as the new boundary condition.
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2.3. Results and discussion

By adopting condition (4) as the fifth boundary condition, the predicted pressure
distributions for α¯ 69.85°, 49.85°, 29.85°, 14.85° are shown in figures 3–6 in
comparison with the data from FJ. The agreement is quite satisfactory, especially
without introducing any extra parameter, such as m which varies with α in (3).
Equation (4), which requires neither any specification of net vorticity in the model a
priori, nor additional empirical information other than the base pressure, is the
preferred boundary condition in this model.

The variation of base pressure near the trailing edge as shown in figure 6 signifies
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that a different flow pattern may take place if α is further reduced. Wu (1962) described
this type of flow as partially developed wake flows in which the near-wake constant
pressure covers only the initial portion of the suction side of the plate in contrast to
fully developed wake flows.

2.4. Flow model for incompletely separated flow

Because of the change in flow pattern over the upper surface of the plate, a model is
proposed such that the pressure over an initial portion of the streamline emanating
from the leading edge is constant. A model can be formulated by introducing more
surface sources to the complex potential described in §2.1.
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While keeping the same conformal mapping as in §2.1, the complex potential for
flow around a circle of unit radius, plus N

q
surface sources of strengths 2Q

k
located

at angular positions δ
k
, and a vortex at the origin, as shown in figure 7, is given by
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Condition (ii) is the specification of the base pressure on N
r
discrete points in the flow

field, and (iii) is to ensure that these points lie along the separation streamline from the
leading edge. Therefore, the unknowns are q

k
, δ

k
(where k¯ 1, 2,… ,N

q
), γ and r

j

(where j¯ 1, 2,… ,N
r
). Note that the pressure at the leading and trailing edges is not

specified but replaced by condition (ii). In addition, condition (3) or (4) is no longer
appropriate in this model simply because the wake is not fully developed and flow
reattachment might be involved.
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2.5. Results and discussion

With five surface sources (N
q
¯ 5), nine discrete points (N
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¯ 9) and the specification of
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where j¯ 0, 1,…, 4, the pressure distribution from the model is compared with the
data from FJ at α¯ 5.85° in figure 8, with the shape of the leading-edge streamline
depicted in figure 9. The agreement on the lower surface is quite satisfactory. On the
upper surface, discrete points on the initial portion of the separation streamline have
C

p
¯C

pb
¯®0.928 as specified, although there is a small variation of pressure

(®0.87&C
p
&®1.1) near the leading edge. The agreement downstream of this portion

of constant pressure becomes less satisfactory, perhaps because the effects of boundary
layer become more pronounced.

3. Discussion and concluding remarks

An analytical model for flow around a flat plate at an arbitrary angle of inclination
with complete separation is proposed. The paper considers the problem again because
previous models fail to reproduce satisfactory results at low angles of attack α, owing
to the neglect of circulation Γ. The key to including this additional unknown in the
problem was to derive the new boundary condition from the well-documented
experimental data without requiring any additional empirical input. (The justification
of assuming constant Strouhal number at α¯ 14.85°, 29.85° lies on the good agreement
between the experimental data and the prediction from the model.) This is worthwhile
without considering extensions to other body shapes. However, it would be relatively
simple to apply the theory to other shapes which experience the same leading-edge
separation as the flat plate, e.g. circular-arc plates, Ka! rma! n–Trefftz airfoils with sharp
leading edge, both classes which could be conformally mapped from the ζ-plane of the
paper. The predicted pressure distributions, in general, agree well with experimental
data. It has been shown that the model provides a smooth transition between
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classical airfoil theory as αU 0° and the wake-source model of PJ as αU 90°. The
inclusion of the vortex to generate circulation around the plate perhaps explains why
this vortex is also required in flow models for lifting bodies as reported in Jandali &
Parkinson (1970), Parkinson & Yeung (1987) and Yeung & Parkinson (1993).
Although it is interesting to extend the application of (4) to bodies of other shapes,
meaningful conclusions cannot be drawn until supporting data for other shapes are
available. The contribution of this paper is to show that with an appropriate boundary
condition derived from physical measurements, a potential flow model can still work
well for separated flow. Moreover, it has been demonstrated that experimental data,
besides being used for validating theoretical predictions, can be useful for the
construction of conditions for theoretical formulation.

For the model dealing with incomplete separation, the separation streamline
emanating from the leading edge with constant pressure over an initial portion is
created such that the flow turns around a leading edge with finite curvature. Therefore,
the unrealistic infinite suction peak resulting from flow turning around the sharp
leading edge, as predicted by classical airfoil theory, can be avoided. The
specification of pressure on points along the wake boundary does not introduce any
additional empiricism because the pressure on the initial portion of the free streamline
is the same as the base pressure, as in Roshko (1954), and the locations of these points
are the solution of the equations. Because the predicted streamline does not join with
the plate after separation or the other streamline from the trailing edge, the model may
be suitable for describing the flow outside the boundary layer in the case of turbulent
reattachment as given in the picture of flow visualization from Werle! (1974).

From Visualized Flow (Japan Society of Mechanical Engineers 1988) at 3°%α% 7°
and Werle! (1974) at α¯ 2.5°, a bubble of recirculating fluid is found at the leading edge
of a flat plate. No attempt has been made to model this type of flow in all the above-
mentioned free-streamline theories and wake-source models. Although results are still
far from being final, some preliminary work has been carried out to create a closed
separation streamline to model a separation bubble at the leading edge of the plate at
small incidence. At α¯ 5.85°, by specifying the location of reattachment and satisfying
the condition of pressure gradient at reattachment, the pressure distributions on the
wetted surface of the plate and the portion of the plate downstream of reattachment
are in good agreement with the data by FJ. The thickness of the closed streamline
predicted by the model is in the same order of magnitude as the data from McCullough
& Gault, although the data are for a thin double-wedge airfoil at α¯ 6°. Nevertheless,
the predicted pressure on the separation streamline is very different from the
experimental data. Perhaps the specification of pressure on the closed streamline, such
as in the model for incomplete separation, will improve the agreement.
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